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Abstract
Ontology Alignment (OA) is essential for enabling semantic interoperability across heterogeneous knowledge

systems. While recent advances have focused on large language models (LLMs) for capturing contextual semantics,

this work revisits the underexplored potential of Knowledge Graph Embedding (KGE) models, which offer scalable,

structure-aware representations well-suited to ontology-based tasks. Despite their effectiveness in link prediction,

KGE methods remain underutilized in OA, with most prior work focusing narrowly on a few models. To address

this gap, we reformulate OA as a link prediction problem over merged ontologies represented as RDF-style

triples and develop a modular framework—integrated into the OntoAligner library—that supports 17 diverse

KGE models. The system learns embeddings from a combined ontology and aligns entities by computing

cosine similarity between their representations. We evaluate our approach using standard metrics across seven

benchmark datasets spanning five domains: Anatomy, Biodiversity, Circular Economy, Material Science and

Engineering, and Biomedical Machine Learning. Two key findings emerge: first, KGE models like ConvE and

TransF consistently produce high-precision alignments, outperforming traditional systems in structure-rich and

multi-relational domains; second, while their recall is moderate, this conservatism makes KGEs well-suited for

scenarios demanding high-confidence mappings. Unlike LLM-based methods that excel at contextual reasoning,

KGEs directly preserve and exploit ontology structure, offering a complementary and computationally efficient

strategy. These results highlight the promise of embedding-based OA and open pathways for further work on

hybrid models and adaptive strategies.
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1. Introduction

Ontologies serve as formal, structured representations of knowledge within a specific domain. By

axiomatizing concepts, relations, and properties, ontologies provide semantic richness that facilitates

knowledge sharing, reasoning, and interoperability. Over the past decades, they have become a

fundamental component of the Semantic Web, powering knowledge-intensive applications across

domains ranging from E-commerce to Biomedical and Material Science. With the rise of artificial

intelligence (AI), particularly in natural language processing (NLP), ontologies have increasingly been

integrated into symbolic AI systems. The advent of large-scale transformer models, such as BERT [1]

and its successors, has accelerated this trend. These models have enabled new methods for semantic

understanding, prompting researchers to revisit ontology-based approaches through the lens of deep

learning. One such area that has gained substantial attention is Ontology Alignment (OA) [2] — the task

of identifying correspondences between semantically equivalent entities across different ontologies.

Modern OA techniques predominantly leverage machine learning and embedding-based strategies to

compute alignments. Among these, large language model (LLM) techniques have become especially

popular due to their ability to encode contextual semantics [3, 4, 5, 6]. Despite this momentum, an

important class of embedding methods — Knowledge Graph Embeddings (KGEs) [7] — remains relatively

underexplored in the context of OA. KGEs are techniques that convert the entities and relations in a

knowledge graph into continuous low-dimensional vectors, allowing the graph’s semantic and structural
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information to be represented numerically. This transformation offers several advantages: it simplifies

large and complex graphs, enables the use of machine learning algorithms, enhances search and

recommendation systems by capturing semantic similarity, and helps uncover hidden patterns and

relationships that are not easily detectable in the original symbolic form.

KGEs, such as TransE [8], DistMult [9], and ComplEx [10], are typically designed for single knowledge

graphs, focusing on link prediction or taxonomy enrichment tasks within a single ontology. As a

result, they are often perceived as less directly applicable to the cross-ontology matching objective

of OA. However, advancements such as RDF2Vec [11] and OWL2Vec [12] have demonstrated the

potential of adapting KGE techniques for ontology-related tasks, including alignment, as is evident with

OWL2VecOA [13]. These models learn embeddings from RDF graphs or OWL ontologies by generating

graph-based sequences, allowing them to capture semantic structure in a way that is more compatible

with OA needs. Still, the majority of current work either focuses narrowly on a few KGE-based models

or fails to harness the full spectrum of available KGE techniques in the alignment setting. This gap

highlights an important research opportunity: to systematically explore and adapt KGE models for OA,
evaluate their comparative performance, and investigate hybrid models that integrate the strengths of both
LLMs and KGEs. By doing so, this work aims to advance the state of OA through KGE methodologies

that are both semantically grounded and computationally scalable.

OA is the process of finding correspondences between semantically related entities from two on-

tologies. Formally, given two ontologies 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 = (𝐶𝑠, 𝑅𝑠, 𝐼𝑠) and 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 = (𝐶𝑡, 𝑅𝑡, 𝐼𝑡), where

𝐶 , 𝑅, and 𝐼 denote sets of concepts, relations, and instances respectively, an alignment 𝐴 is a set of

mappings 𝑚 = ⟨𝑒𝑠, 𝑒𝑡, 𝑟, 𝜃⟩ such that 𝑒𝑠 ∈ 𝑂𝑠, 𝑒𝑡 ∈ 𝑂𝑡, 𝑟 ∈ {=,⊆,⊇,≡,≈} is a semantic relation, and

𝜃 ∈ [0, 1] represents the confidence score. A similarity function sim(𝑒𝑠, 𝑒𝑡) : 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 ×𝑂𝑡𝑎𝑟𝑔𝑒𝑡 → [0, 1]
is typically used to compute this score, and mappings are included in the alignment if sim(𝑒𝑠, 𝑒𝑡) ≥ 𝜏 ,

where 𝜏 is a predefined similarity threshold.

Additionally, an ontology can be represented as a set of triples in the form (ℎ, 𝑟, 𝑡), where ℎ denotes

the head entity, 𝑟 the relation, and 𝑡 the tail entity. In this work, to enable KGE models to learn

meaningful representations from both 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑂𝑡𝑎𝑟𝑔𝑒𝑡, we combined their respective triples to

construct a unified triple repository referred to as the triple factory 𝐹𝐴. This integration serves as a

foundational step toward a systematic framework for analyzing and exploring the behavior of KGEs

within the context of OA. By formulating OA as a link prediction task over the merged ontologies, we

implemented and evaluated a collection of KGE models specifically tailored for alignment objectives.

This formulation allows the models to jointly learn latent representations of entities and relations

across both ontologies, thereby capturing structural and semantic correspondences more effectively.

The learned representations were subsequently utilized for equivalence-based alignment, enabling the

identification of semantically equivalent concepts across ontologies. Moreover, to make the collection

entirely available for researchers and practitioners, we integrated our systematic approach to the

OntoAligner [14] – a comprehensive and modular Python library dedicated to OA.

The remainder of this paper is organized as follows: section 2 reviews related work; section 3

details our proposed methodology with integration with the OntoAligner library; section 4 presents

the experimental results and analysis; and section 5 concludes the paper with discussions and future

research directions.

2. Related Works

Early work on graph alignment employs a graph embedding algorithm, and studies have shown that

the great capability of the KGE method is effective for aligning structurally similar ontologies and is

more robust against alignment noise when dealing with graphs of different sizes and architectures [15].

[16] proposed a multi-view embedding model for biomedical OA using TransE and ConvE, demon-

strating the utility of combining structural and semantic perspectives. Similarly, [17] conducted a

systematic evaluation of KGEs for gene-disease association prediction, benchmarking models including

TransD, TransE, TransH, DistMult, HolE, and ComplEx. More recent approaches have explored deeper



models and alignment-specific enhancements. [18] introduced a security-aware, deep model-based

entity alignment method incorporating MTransE, TransD, RotatE, ConvE, AlignE, AttrE, and GCN-a,

tailored for edge-specific knowledge graphs. [19] tackled cross-lingual OA by leveraging both structural

and semantic similarity via node2vec, GCN, RGCN, and TransE.

Contextual embeddings have also gained traction. [20] combined traditional KGEs such as TransE,

TransR, and DistMult with semantic embeddings like Word2Vec, Onto2Vec, OPA2Vec, and OWL2Vec

to predict subsumption relations. Likewise, [21] presented LaKERMap, a contextualized structural

self-supervised learning approach for ontology matching that employed TransE for inference tasks.

Additionally, [22] used TransE, RotatE, and CompGCN for deep active alignment of knowledge graph

entities and schemata. [23] introduced an assertion and alignment correction framework using RDF2Vec,

TransE, TransR, TransH, DistMult, and ComplEx.

Additional contributions include A-LIOn by [24], which used TransR to align ontologies through

inconsistency-based negative sampling, and the AMD matcher [25], which also adopted TransR for large-

scale alignment scenarios. [26] examined context-enriched models for aligning biomedical vocabularies

using a range of methods, including TransE, TransR, RESCAL, DistMult, HolE, ComplEx, and ConvKB.

In the scholarly knowledge domain, [27] refined the SemOpenAlex concept ontology using TransE,

DistMult, and QuatE with SKOS-based constraints. [28] introduced NELLIE, an open data linking system

leveraging ComplEx embeddings for scalable entity linking. Finally, [29] investigated fine-grained

semantics in knowledge graph relations, further underscoring the breadth of KGE applications in

ontology understanding and alignment.

3. Methodology

The OntoAligner framework is composed of three key components: the parser, encoder, and aligner.
This modular design enables OntoAligner to serve as a hub for integrating diverse OA approaches.

Building upon these design principles, we developed a framework that adheres to these foundational

components, as illustrated in Figure 1. In the following sections, we first introduce the overall alignment

strategy, followed by an overview of the collection of KGE models integrated within this strategy.

3.1. Graph Embedding Aligner

The architecture of the Graph Embedding Aligner, as illustrated in Figure 1, follows a modular three-stage

pipeline: Parser, Encoder, and Aligner. This design reflects the core components implemented in the

code and provides a precise data flow from input ontologies to alignment predictions.

1) Parser. The pipeline begins with parsing the source 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 and target 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 ontologies. Each

ontology is decomposed into RDF-style metadata, consisting of Subject, Predicate, and Object, each

annotated with its respective IRI and label. Moreover, a class membership metadata — indicating

whether each entity plays a subject or object role in a class assertion is also attained. In the end, each

ontology is represented by its own metadata.

2) Encoder. In the encoding stage, the extracted triples from both ontologies are unified into a single

triplet representation: a set of 𝑂𝑠𝑜𝑢𝑟𝑐𝑒(ℎ, 𝑟, 𝑡) and 𝑂𝑡𝑎𝑟𝑔𝑒𝑡(ℎ, 𝑟, 𝑡) triples are obtained, where ℎ, 𝑟, and 𝑡
are represented using natural language text rather than IRIs. Next, as a triplet representation, we unified

both triples to form a triple factory 𝐹𝐴 := 𝑂𝑠𝑜𝑢𝑟𝑐𝑒(ℎ, 𝑟, 𝑡)∪𝑂𝑡𝑎𝑟𝑔𝑒𝑡(ℎ, 𝑟, 𝑡). One of the key advantages

of this unified representation is that it enables the embedding model to automatically identify and learn

shared structural and semantic patterns across both ontologies with high precision, thereby enhancing

the quality and effectiveness of the alignment process.

3) Aligner. The aligner component consists of two submodules. 1) Representation Learning, where

a PyKEEN model embeds and trains each entity into a continuous vector space where semantically
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Figure 1: The architecture of the proposed framework, comprising three main stages: Parser, Encoder, and
Aligner. The model ingests source and target ontologies, encodes them as unified triples, learns low-dimensional
embeddings via a KGE model (trained in PyKEEN), and finally computes alignment predictions through cosine
similarity.

or structurally similar entities are positioned closely together. 2) Inference, which uses the learned

embeddings to calculate cosine similarity between every ⟨𝑒𝑠 ∈ 𝑂𝑠𝑜𝑢𝑟𝑐𝑒, 𝑒𝑡 ∈ 𝑂𝑡𝑎𝑟𝑔𝑒𝑡⟩ pair for ranking,

and postprocessing.

• Representation Learning. In this submodule, a KGE model is trained using a link prediction

objective. The process begins with negative sampling, which augments the dataset by generating

plausible but incorrect triples. This step helps the model learn to distinguish between valid

and invalid relationships. The KGE model is then fine-tuned, and its resulting low-dimensional

embeddings are used for alignment. Although negative sampling may seem to introduce noise into

the OA process, it plays a critical role in improving the embedding model’s ability to distinguish

between valid and invalid relations. This results in more robust and generalizable representations,

which ultimately lead to more accurate alignment across heterogeneous ontologies. We utilize

PyKEEN [30] to support each stage of representation learning, as it offers a comprehensive suite

of KGE models and tools.

• Inference. In inference, once embeddings are learned, the embeddings ∀𝑒 ∈ 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 and

∀𝑒 ∈ 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 are extracted. Let E𝑠𝑜𝑢𝑟𝑐𝑒 = [e
(1)
𝑠 , e

(2)
𝑠 , . . . , e

(𝑛)
𝑠 ] ∈ R𝑛×𝑑

denote the matrix of

L2-normalized embeddings for entities from the source ontology 𝑂𝑠𝑜𝑢𝑟𝑐𝑒, and let E𝑡𝑎𝑟𝑔𝑒𝑡 =

[e
(1)
𝑡 , e

(2)
𝑡 , . . . , e

(𝑚)
𝑡 ] ∈ R𝑚×𝑑

represent the normalized embeddings from the target ontology

𝑂𝑡𝑎𝑟𝑔𝑒𝑡, where 𝑑 is the embedding dimension. Each vector is normalized as ‖e‖2 = 1. The

similarity between entities is computed using cosine similarity. The similarity matrix S ∈ R𝑛×𝑚

is defined as S = E𝑠𝑜𝑢𝑟𝑐𝑒 ·E⊤
𝑡𝑎𝑟𝑔𝑒𝑡. Where, each entry 𝑆𝑖𝑗 corresponds to the cosine similarity

between the 𝑖-th source and 𝑗-th target entities: 𝑆𝑖𝑗 = cos(𝜃) = e
(𝑖)
𝑠 · e(𝑗)𝑡 =

∑︀𝑑
𝑘=1 𝑒

(𝑖)
𝑠,𝑘 · 𝑒

(𝑗)
𝑡,𝑘 .

In the final step, for each source entity 𝑖, the target entity with the highest similarity score is

selected: 𝑗* = argmax𝑗 𝑆𝑖𝑗 . The alignment result is then given by: A𝑖 = ⟨𝑒(𝑖)𝑠 , 𝑒
(𝑗*)
𝑡 , 𝜃⟩. Where

𝜃 := 𝑆𝑖𝑗* is the confidence score of the alignment.

Once the alignment pairs are extracted, a post-processing step is applied to refine the results.

First, a one-to-one cardinality constraint is enforced to ensure that each 𝑒𝑠 ∈ 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 aligns with

at most one 𝑒𝑡 ∈ 𝑂𝑡𝑎𝑟𝑔𝑒𝑡, and vice versa. Then, a confidence-based filtering is performed by

applying a similarity threshold 𝜃 ≥ 𝜏 , where 𝜏 ∈ [0, 1] is a predefined cutoff. Alignment pairs

with scores below this threshold are discarded to retain only the most confident and unambiguous

matches.

3.2. Knowledge Graph Embedding Collections

Based on a review of related works, we identified the 10 most frequently used KGE models that have

been applied to OA from various perspectives—whether as standalone baseline models or as part of

hybrid frameworks. These models consistently appear across numerous OA studies and knowledge

engineering benchmarks. In addition to these top 10, we incorporated seven additional models that,

while not as widely adopted in OA specifically, have shown strong performance and versatility in



Table 1
Overview of 17 KGE models supported in OntoAligner.

KGE Model Overview Related Works
ConvE [31] ConvE is a deep convolutional embedding model for link prediction that uses 2D convolutions

over reshaped entity and relation embeddings to capture complex interaction patterns
between them.

[32, 33, 34, 16, 18]

TransD [35] TransD (Translation on Dynamic Mapping Matrices) is a knowledge graph embedding model
designed for link prediction and triple classification. It improves upon earlier translation-
based models like TransE, TransH, and TransR by dynamically constructing relation-specific
projection matrices using both entity and relation projection vectors.

[17, 36, 18]

TransE [8] TransE is a simple and scalable model for embedding knowledge graphs in low-dimensional
vector spaces. It represents relationships as vector translations between head and tail entity
embeddings. For a valid triple (ℎ, 𝑟, 𝑡), TransE enforces that ℎ+ 𝑟 ≈ 𝑡. The model is easy to
train, has few parameters, and can handle very large datasets.

[16, 17, 19, 20, 21, 22, 23, 26, 27]

TransF [37] TransF is a flexible translation-based model for knowledge graph embedding. It improves on
previous methods by allowing more adaptable translations to better handle complex relation
types, like one-to-many or symmetric relations. Without increasing model complexity,
TransF introduces a new scoring function and shows strong performance improvements in
experiments.

-

TransH [38] TransH improves knowledge graph embeddings by projecting entities onto relation-specific
hyperplanes before translation. This allows it to handle complex relation types (e.g., one-to-
many) better than TransE, while maintaining similar efficiency and scalability.

[17, 23]

TransR [39] TransR enhances knowledge graph embeddings by projecting entities into relation-specific
spaces before applying translations, allowing better modeling of diverse relational semantics
than TransE and TransH.

[20, 23, 24, 25, 26]

DistMult [9] DistMult is a simple bilinear embedding model for knowledge graphs that represents entities
and relations as vectors, using matrix multiplication to capture relational semantics. It
outperforms previous models like TransE in link prediction and enables effective logical rule
mining.

[17, 20, 23, 26, 27, 29]

ComplEx [10] ComplEx is a link prediction model that uses complex-valued embeddings to effectively
capture both symmetric and antisymmetric relations. It relies on the Hermitian dot product,
offering a simple yet powerful and scalable approach that outperforms existing models on
standard benchmarks.

[17, 23, 26, 28]

HolE [40] HolE (Holographic Embeddings) is a knowledge graph embedding model that uses circular
correlation to create compositional vector representations of entities and relations. It
efficiently captures complex interactions while remaining scalable and easy to train.

[17, 26]

RotatE [41] RotatE is a knowledge graph embedding model that represents relations as rotations in
complex space, enabling it to capture patterns like symmetry, inversion, and composition. It
uses a novel self-adversarial negative sampling for efficient training and outperforms prior
models on link prediction tasks.

[18, 22]

SimplE [42] SimplE improves tensor factorization for knowledge graph link prediction by learning depen-
dent embeddings for each entity, overcoming limitations of traditional methods. It offers
interpretable, efficient embeddings, supports background knowledge, and achieves strong
performance with proven full expressiveness.

-

CrossE [43] CrossE is a knowledge graph embedding method that models bi-directional interactions
between entities and relations by creating both general and triple-specific embeddings. It
achieves state-of-the-art link prediction results on complex datasets and improves explain-
ability by generating reliable paths to support its predictions.

-

BoxE [44] BoxE is a knowledge base completion model that represents entities as points and relations
as hyper-rectangles (boxes) in a spatial embedding. It overcomes key limitations of previous
models by supporting logical rules, hierarchies, and higher-arity relations.

-

CompGCN [45] CompGCN is a graph convolutional network designed for multi-relational graphs that
jointly learns embeddings for both nodes and relations. It uses entity-relation composition
methods to efficiently handle many relations, generalizes existing multi-relational GCNs,
and achieves strong results on tasks like node classification and link prediction.

[22]

MuRE [46] MuRE proposes embedding multi-relational knowledge graphs in hyperbolic space using
relation-specific transformations, better capturing multiple hierarchies. It outperforms
Euclidean and other methods on link prediction, especially in low-dimensional settings.

-

QuatE [47] QuatE uses quaternion embeddings to model entities and relations in knowledge graphs,
enabling expressive 4D rotations and compact interactions via the Hamilton product. It
generalizes ComplEx with better geometric properties and effectively captures key relational
patterns, achieving strong results on benchmark datasets.

[27]

SE [48] SE proposes a neural network-based approach to embed symbolic knowledge from diverse
Knowledge Bases into a continuous vector space, preserving and enriching their structure.

-

broader knowledge graph tasks such as link prediction, completion, and entity classification. Table 1

summarizes all 17 models, presenting their key characteristics and citations from recent literature.

The selection of these models was guided by several criteria. First, we prioritized diversity in

modeling approaches, ensuring inclusion of translation-based (e.g., TransE, TransH), convolutional

(e.g., ConvE), bilinear (e.g., DistMult), and neural graph-based methods (e.g., CompGCN). Second, we

considered theoretical expressiveness and scalability, selecting models that are capable of handling



Table 2
OAEI tracks and tasks statistics across source, target, and alignments.

Track Task 𝑂𝑠𝑜𝑢𝑟𝑐𝑒 Triplets 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 Triplets References
Anatomy Mouse-Human 5,957 13,196 1,516

Biodiv – Biodiversity & Ecology
ENVO-SWEET 16,237 17,182 805
FISH-ZOOPLANKTON 440 173 15

CE–Circular Economy CEON - BiOnto 1,896 1,307 18
MSE–Material Science & Engineering MI - MatOnto 2,152 2,740 302

Bio-ML–Biomedical Machine Learning
NCIT-DOID 22,559 19,276 3,280
OMIM-ORDO 23,189 11,429 2,605

large-scale ontologies with complex relational patterns. Third, we looked at empirical evidence from

prior evaluations that demonstrated the effectiveness of these models across a range of domains [15].

Finally, compatibility with PyKEEN was an important practical consideration, allowing for unified

implementation and experimentation within the OntoAligner framework. These selected models provide

a representative and comprehensive foundation for experimenting with embedding-based OA strategies.

3.3. Integration with OntoAligner

To enable embedding-based OA, we developed a specialized module called GraphEmbeddingAligner.
Built on top of the PyKEEN framework, this aligner harnesses KGE models to learn vector represen-

tations of entities from both source and target ontologies. OntoAligner currently supports 17 KGE

models, all of which can be easily integrated through this module. A comprehensive usage guide is

available at http://ontoaligner.readthedocs.io/aligner/kge.html. With a modular and extensible design,

GraphEmbeddingAligner allows users to flexibly experiment with different KGE models and cus-

tomize training configurations to suit various alignment tasks. An example demonstrating how to use

KGE-based aligners within OntoAligner can be found at https://github.com/sciknoworg/OntoAligner/

blob/main/examples/kge.py.

4. Evaluations

This section delves into empirically validating KGE models by employing precision, recall, and F1-score

metrics. Experimental datasets and results are presented in the following.

4.1. Experimental Setups

Evaluation Datasets OAEI Tracks and Tasks. We carefully chose five tracks from the OAEI-

2024 campaign [49] spanning diverse domains for our experimental configurations. The statistics

for seven datasets in five tracks are outlined in Table 2. The chosen tracks include: Anatomy [50]

(Mouse-Human), biodiv – Biodiversity and Ecology [51] (two tasks), CE – Circular Economy [52]

(CEON-BiOnto), MSE – Material Science and Engineering [53](MI-MatOnto), and Bio-ML – Biomedical

Machine Learning [54] (two tasks). These tracks were chosen to represent a range of dataset sizes

(according to the number of triplets) and complexity levels, including: Small-scale tasks (CE track, MSE

track, and FISH-ZOOPLANKTON from Biodiv track), Medium-scale tasks (Anatomy), and Large-scale

tasks (Bio-ML track and the ENVO–SWEET task from the Biodiv track). This selection ensures the

evaluation covers both domain and size diversity, providing insights into the performance of KGEs.

KGE Hyperparameters and OS. For fair comparison, we used CPU-based experimentation with an

embedding dimension of 200, training epoch number of 20, train batch size of 64, evaluation batch size

of 128, and a number of negative samples per positive sample of 5. Moreover, we used 10 core CPUs

with a maximum memory of 80 GB for experimentation.

http://ontoaligner.readthedocs.io/aligner/kge.html
https://github.com/sciknoworg/OntoAligner/blob/main/examples/kge.py
https://github.com/sciknoworg/OntoAligner/blob/main/examples/kge.py


Table 3
Best-performing KGE models on seven OAEI-2024 benchmark tasks. The table reports performance metrics for
the top KGE model per task, including threshold 𝜏 , overlap between alignments and gold (∩), alignment size (𝐴),
execution time (T in seconds), precision (Prec), recall (Rec), and F-Measurement (F). The final column lists the
best-performing OA system for each task (with F-Measurement score in parentheses) for comparison.

Task KGE 𝜏 ∩ 𝐴 T Prec Rec F Best Performer
Mouse-Human DistMult 0.34 1047 1069 70.3 97.9 69.0 81.0 Matcha [55] (94.1)
FISH-ZOOPLANKTON TransF 0.25 9 9 4 100 60.0 74.9 LogMapLt [56] (64.4)
ENVO-SWEET ConvE 0.6 327 367 855 89.1 40.6 55.8 ‌LogMap [56] (71.3)
CEON-BiOnto ConvE 0.35 10 17 80 58.8 55.5 57.1 Matcha [55] (47.8)
MI-MatOnto TransD 0.39 32 37 29 86.4 10.5 18.8 LogMap [56] (32.0)
OMIM-ORDO ConvE 0.43 538 772 871 69.6 20.6 31.8 BERTMap‡ [56] (64.6)
NCIT-DOID SE 0.43 1751 2537 1584 69.0 53.3 60.2 HybridOM* [57] (91.8)

4.2. Results

The Table 3 presents the best-performing KGE model for each of the seven OAEI benchmark tasks for

all seven tasks of this study.

4.2.1. Domain Specific Analysis

We have explored KGE models across five domains, and the results presented in Table 3 present

interesting findings per domain, such as:

• Anatomy Track. In the Mouse-Human task, the DistMult model reached a high precision of

97.9—ranking second among all methods of OAEI-2024
1
—though its recall (69.0%) brought the

overall F-Measure to 81.0, behind Matcha aligner [55] with F-Measure of 94.1.

• Biodiversity and Ecology Track. In the FISH-ZOOPLANKTON task of Biodiv, KGE models –

TrasnF aligner – showed notable superiority. The TransF model achieved a perfect precision of

100 and an F-Measure of 74.9%, significantly outperforming LogMapLt [56]—the best OAEI-2024

system at this task
2
—with an F1 of 64.4. Despite LogMapLt’s nearly perfect execution time, the

KGE method required only 4 seconds, maintaining efficiency while outperforming the state-

of-the-art system. In the SWEET-ENVO task, the LogMap [56] remains the best OAEI system

by F-Measure of 71.3%. However, ConvE aligner exhibited a higher precision of 89.1% than all

systems within OAEI 2024, including LogMapLt with a precision of 80.3%.

• Circular Economy Track. For the CEON-BiOnto task from this track, the ConvE aligner achieved

the best overall F-Measure of 57.1%, outperforming Matcha [55] with an F-Measure of 47.8%, the

top performer in the official OAEI-2024
3

results.

• Material Science and Engineering Track. The MI-MatOnto task within this track, showed

a poor F-Measure of 18.8% using TransD aligner. However, the maintained precision of 86.4%

places this model’s performance close to the LogMap system (from OAEI-2023
4
) with a precision

of 88.1%.

• Biomedical Machine Learning Track. For this track, the KGE models did not perform well

in terms of precision and F-Measure. For the OMIM-ORDO task, ConvE aligner reached only

F-Measure of 31.8%, far behind BERTMap
‡

[56] with F-Measure of 64.6% (OAEI-2024
5

system

performance). Even the precision of 69.6% fell short, indicating limitations of unsupervised KGE

methods for complex disease-related alignments. For another task of this track, specifically

NCIT-DOID task, it showed SE aligner performance of 60.2% in terms of F-Measure, significantly

1

https://oaei.ontologymatching.org/2024/results/anatomy/index.html

2

https://oaei.ontologymatching.org/2024/results/biodiv/index.html

3

https://oaei.ontologymatching.org/2024/results/ce/index.html

4

https://github.com/EngyNasr/MSE-Benchmark/tree/main/Results/OAEI2023

5

https://krr-oxford.github.io/OAEI-Bio-ML/2024/index.html

https://oaei.ontologymatching.org/2024/results/anatomy/index.html
https://oaei.ontologymatching.org/2024/results/biodiv/index.html
https://oaei.ontologymatching.org/2024/results/ce/index.html
https://github.com/EngyNasr/MSE-Benchmark/tree/main/Results/OAEI2023
https://krr-oxford.github.io/OAEI-Bio-ML/2024/index.html
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Figure 2: Column 1 and 2: Precision and recall analysis across aligners and tasks. Column 3: Representation
learning and inference time response analysis.

underperforming compared to HybridOM* [57] with F-Measure of 91.8%. Precision of 69.0% was

still promising, but the gap in recall of 53.3% limited its overall effectiveness.

KGE models, particularly ConvE and TransF, demonstrated competitive or even superior performance

on two tasks—FISH-ZOOPLANKTON and CEON-BiOnto—in terms of F-Measure. In other tasks, particu-

larly OMIM-ORDO and NCIT-DOID, performance lagged behind traditional or supervised OA systems.

Overall, KGE methods tend to produce high-precision alignments with lower recall, suggesting their

suitability for applications requiring conservative, high-confidence mappings.

4.2.2. Empirical Trends in KGE Aligners

The analysis of the summary of results presented in Table 3 across seven benchmark tasks and five

domains reveals consistent empirical trends in KGE aligners’ behavior. While performance varies across

tasks and domains, certain trends emerge regarding precision, recall, alignment size, execution time,

and model-task interactions. These observations provide insight into the operational characteristics

and efficiency of KGE aligners and highlight considerations for their application in ontology alignment

tasks

Behavioral Characteristics. Across all tasks, the top-performing KGE models exhibited notably high

precision scores—often exceeding 85%—even in tasks where recall and F-Measure were relatively poor,

e.g., TransD in MI-MatOnto (Precision 86.4% but Recall 10.5%), ConvE in ENVO-SWEET (Precision 89.1%

vs. Recall 40.6%), or DistMult in Mouse-Human: (Precision 97.9% vs. Recall 69.0%). More detailed analysis

is presented in Figure 2 (Precision and Recall columns). This shows that KGE aligners are conservative

aligners that prioritize correctness over completeness, making them well-suited for high-confidence,

low-risk integration tasks where false positives are costly.

Moreover, tasks like OMIM-ORDO and NCIT-DOID, which have large-scale sizes in terms of refer-

ences, also had large-scale alignments (𝐴 = 772 and 𝐴 = 2537 respectively). Yet, their performance

(F-Measures of 31.8% and 60.2%, respectively) remained moderate compared to tasks with smaller

alignments (e.g., FISH-ZOOPLANKTON with only nine alignments and F-Measures = 74.9%, where

total references is 9 – see Table 2 for total references). This means that predicted alignment volume

does not directly translate to quality, especially in semantically dense or noisy domains. KGE models

may overgenerate candidates in large ontologies unless appropriately constrained.

Operational Efficiency. The majority of KGE aligners completed their tasks—including represen-

tation learning and inference—within 100 seconds for most benchmark tasks (Table 3), even when

handling hundreds or thousands of candidate alignments, such as in Mouse-Human. Figure 3 illustrates

the CPU versus memory usage of the models, averaged across all tasks. Most aligners utilize 80–90%

of available CPU cores and consume over 6GB of memory, highlighting that KGE-based methods



878 879 880 881 882 883 884 885 886
CPU Usage (%)

5550

5575

5600

5625

5650

5675

5700

5725

5750

M
em

or
y 

(M
B)

BoxE

CompGCN

ComplEx

ConvE
CrossE

DistMult

HolE

MuRE

RotatE

SE

SimplE

TransD

TransE

TransF

TransH
TransR

Average CPU vs Memory per Model

Figure 3: Scatter plot showing the average CPU utilization (%) against memory consumption (MB) for each
KGE aligner. Each color represents a distinct model. This visualization highlights the relative computational
efficiency and resource demands of the models.

are computationally efficient and capable of supporting scalable or on-demand ontology alignment,

including in dynamic or real-time systems.

Model-Task Interactions. The optimal similarity threshold 𝜏 for alignment significantly varies

across tasks, suggesting that no universal threshold works across domains. This indicates that KGE

aligners require task-specific or domain-specific calibration, particularly around the similarity threshold.

Auto-tuning or adaptive thresholding could significantly improve F-Measure in future iterations.

Nevertheless, certain KGE aligners seem particularly effective in specific domains. ConvE aligner

performs best in comparison to its own companion KGE aligners in multi-relational tasks (ENVO-

SWEET, CEON-BiOnto, OMIM-ORDO). TransF aligner excels in structure-rich, less ambiguous domains

(FISH-ZOOPLANKTON). DistMult works well in clean, hierarchical taxonomies (Mouse-Human). SE

aligner provides a better balance of precision and recall in larger biomedical terminologies (NCIT-DOID).

Future systems could auto-select the KGE aligner based on ontology metadata (e.g., size, depth, domain)

to optimize performance per task or do ensemble learning.

5. Conclusions and Future Directions

In this paper, we have systematically explored the application of Knowledge Graph Embeddings within

Ontology Alignment tasks. Our comprehensive framework, integrated within the OntoAligner toolkit,

leverages a collection of 17 prominent KGE models. Through empirical evaluations on seven benchmark

tasks across diverse domains such as Anatomy, Biodiversity, Circular Economy, Material Science,

and Biomedical Machine Learning, we identified several key findings. KGE-based aligners generally

produce alignments characterized by high precision but moderate recall, indicating their suitability for

conservative, high-confidence ontology matching scenarios.

Notably, ConvE and TransF emerged as particularly effective models, demonstrating superior perfor-

mance in multi-relational and structure-rich tasks, respectively. Nevertheless, our analysis also revealed

limitations of KGE methods in complex biomedical alignments, highlighting the need for improved

techniques or hybrid approaches in these domains.

Future research could address several promising directions:

• Adaptive Thresholding and Calibration: Our results indicated no universal similarity threshold

applicable across diverse ontology alignment tasks. Developing adaptive thresholding strategies



that dynamically calibrate based on ontology metadata could enhance model flexibility and

performance.

• Hybrid Models: Integrating KGEs with LLMs or other contextual embedding approaches could

leverage complementary strengths, potentially improving alignment accuracy in complex, context-

rich domains.

• Domain-specific Enhancements: Given the domain-dependent effectiveness observed, tailoring

KGE methodologies to specific ontological structures or leveraging metadata-driven model selec-

tion and ensemble strategies may provide meaningful gains.

In conclusion, embedding-based ontology alignment presents a powerful yet still evolving paradigm.

Addressing these future directions will not only advance the state-of-the-art in ontology alignment but

also extend the practical utility of KGEs across a broader range of semantic web and knowledge-intensive

applications.
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